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ABSTRACT 

A disc-shaped baffle with an array of microphones on 

each surface has recently been proposed as a device for 

acquiring higher-order ambisonic signals. In this paper, 

we will study how an array of this type performs with re-

gards to three different beamforming algorithms. The re-

sults are quantified through numerical experiments and 

verified by measurement. 

1. INTRODUCTION 

Numerous geometries and sensor types have been studied 

for the purpose of producing microphone arrays with 

good beamforming properties while at the same time con-

forming to various practical and economic constraints. 

The array studied in this paper is a double-sided array 

of microphones arranged on a rigid, disc-shaped baffle. 

There are several motivations for choosing this geometry. 

Such arrays could be produced at low cost using normal 

electronics manufacturing techniques. They would be 

both compact and mechanically robust. They would take 

up a minimal amount of space in 360 degree video re-

cordings, and could even vanish completely if combined 

with two half-sphere camera system placed at its center. 

However, this all is only useful if they also exhibit good 

acoustical properties. 

Arrays of this type have recently been studied for the 

purpose of acquiring higher-order ambisonic signals [1]. 

When compared to the more conventional spherical ge-

ometry, they have both advantages and disadvantages. 

The disadvantages stem from the fact that the array has a 

different symmetry than the desired basis functions, re-

quiring more complex encoding filters that have a lower 

peak white noise gain, WNG. The advantages stem from 

the multi-radius nature of these arrays, leading to a wider 

frequency range. When the resulting noise level is 

weighted and integrated over the spectrum, the flat array 

comes out on top for low ambisonic orders and ties with a 

comparable spherical array at orders 2 and 3. 

In this paper, the beamforming performance of the flat 

array will be studied, following broadly the outline and 

notation of [2], which studied the same for spherical ar-

rays. That article introduced several beamforming algo-

rithms, some based on ambisonic signals derived from 

spherical arrays and others using the direct output of the 

microphone array. Here, we will only study the latter 

ones, since these have the highest performance.  

2. ACOUSTICAL MODEL 

We will model the array as a rigid, circular disc-shaped 

baffle. According to [3], for a plane wave incident at an 

angle    with the positive z-axis, such that 

                            (1) 

where k is the wave number, the total field on the top sur-

face of the disc is 

  

      
 

 
∑ ∑   

  

 ̃ 
 

 

   
          

 

   

 

   

  

   
               

                , (2) 

 

where    is the scattered field, a is the radius of the disc, 

r is the distance from the center of the disc and  ̃  R and 

S are defined in [4]. 

For an incident field equal to one of the eigenfunctions 

  
  of the wave equation in spherical coordinates, 
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where   
  are the spherical harmonic functions [5] and    

are the spherical Bessel functions, the scattered field on 

the top surface simplifies to 
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where   
  are constants. 

The incident field on the bottom surface is equal to that 

on the top surface, and the scattered field on the bottom 

surface is opposite that on the top surface. 

We express a general incident field as a linear combi-

nation of eigenfunctions of the wave equation: 
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where     are the coefficients that describe the field. The 

total field, as sensed by the microphones, is equal to this 

incident field plus the scattered field 
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The outer sums in (5) and (6) can be truncated at a finite 

    , since the Bessel functions and the scattered field 

decrease rapidly in magnitude with n when     . The 

functions are evaluated at the M microphone locations, 

given by   ,    and    , bearing in mind that    must 

be negated for microphones on the bottom side of the 

disc. The result of all this is expressed in this matrix 

equation, following the notation of [2]: 

      , (7) 

where   [                           ]  is a col-

umn vector of length M holding the pressures sampled by 

the array microphones and the           matrix B 

encodes the response of the array to an arbitrary sound 

field, where each column contains its response to an inci-

dent field equal to a single eigenfunction   
 . The col-

umns are ordered by n, then by m. The vector     con-

tains the coefficients       , ordered in the same man-

ner. 

3. BEAMFORMERS 

Of the beamformers proposed in [2], we will study the 

―space domain maximum directivity index with optimal 

alias cancellation‖ (SMDAC) and the ―space domain 

maximum white noise gain with optimal alias cancella-

tion‖ (SMGAC) beamformers. We will also study the 

―sensitivity constrained optimal beamformer‖ (SCOB) 

proposed in the context of line arrays in [6]. Apart from a 

normalization constant, the same beamformers can also 

be derived from an MVDR formulation [7]. 

In each case, the beamformer is expressed as a vector 

of weights   to be applied to the input signal vector   in 

order to produce the output signal y: 

               . (8) 

Its response A in a given direction (  ,   ) can be 

found by setting    equal to the coefficients of a 

planewave,   
  [  
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3.1 Maximum-directivity beamformer 

This beamformer aims to maximize the directivity factor 

DF of the array, i.e. the output signal power for signals 

coming from the look direction (  ,   ) relative to the av-

erage power for all possible directions of incidence. The 

expression for the DF is given by 
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The directivity index DI is the directivity factor ex-

pressed in dB. The beamformer weights is given by 

                 
   (11) 

It is not normalized (i.e. distortion-free in the MVDR 

sense), but can be normalized by dividing by its response 

in the look direction,           . 

3.2  Maximum white noise gain beamformer 

The white noise gain of a beamformer is defined as the 

improvement in the signal-to-noise ratio in the beam-

former output relative to a single sensor in free-field con-

ditions. Its mathematical expression in this context is 

    
|            |
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Its maximum value is achieved with the SMGAC 

beamformer, defined by 

          
   (13) 

 

3.3 Sensitivity constrained beamformer 

As we will see in the following sections, the SMDAC 

beamformer cannot be used across the entire spectrum in 

practice, due to its tendency to amplify sensor noise. 

However, we may still want a higher directivity than that 

offered by the SMGAC beamformer, so a compromise 

between the two might be useful. The sensitivity con-

strained beamformer provides this through a tradeoff pa-

rameter  : 

                   
   (14) 

For a given WNG, this is the beamformer which opti-

mizes the DI [6]. Or, conversely, for a given DI it opti-

mizes WNG. Setting     gives the highest directivity 

and identical weights to the SMDAC beamformer. In-

creasing   towards infinity gives the highest WNG. Apart 

from the constant factor  , which vanishes when the 

beamformers are normalized, this gives the same weights 

as the SMGAC beamformer. The optimal value for   will 

in practice depend on the ratio between sensor noise and 

ambient noise. 

4. NUMERICAL EXPERIMENTS 

The array studied here consists of 84 microphones, with 

42 placed on either side of the disc as shown in Figure 1. 

 

Figure 1. Microphone layout: ○ microphones on top 

side. ● microphones on bottom side 



  

 

The layout was optimized for producing a 3
rd

 order 

ambisonic signal with controlled aliasing up to a frequen-

cy of 15 kHz [1]. The array has a radius of 85 mm. 

The microphones are arranged in six rings of 14 mi-

crophones, 7 on each side of the baffle. The radiuses of 

the rings are given in Table 1. 

 

Ring no. 1 2 3 4 5 6 

Radius / mm 6.7 13.1 25.3 37.1 54.2 78.3 

Table 1. Microphone ring radiuses. 

When used far below the aliasing frequency, the 

SMDAC beamformer is very sensitive to noise, numeri-

cal stability and systematic errors. This makes it unsuita-

ble for use in this frequency range, but it provides a use-

ful upper bound for the directivity index. The SMGAC 

has no stability problems, but is usually not the optimal 

choice, since a small reduction in WNG relative to this 

maximum can usually provide a large increase in di-

rectivity index. As a representative of the continuum of 

beamformers between these two extremes we use the 

SCOB beamformer with       , which provides a rea-

sonable trade-off between directivity and noise. 

 

Figure 2. Directivity index and white noise gain for 

the three beamformers. 

 

Figure 2 shows the directivity index and white noise 

gain across the spectrum for the three different beam-

formers when pointed in the     direction. At higher 

frequencies, the differences between the beamformers 

vanish. 

Around 1.5 kHz, the scattering and SMGAC array pro-

cessing combine favorably to give a maximum WNG of 

26 dB, well above the maximum of            = 19 dB 

for an open array with the same number of microphones. 

Below about 3 kHz, the SMDAC plot is not reliable due 

to numerical instability. 

Figure 3 shows the beam shapes at one frequency and 

illustrates how the increase in WNG comes at the cost of 

a wider main lobe as well as stronger side lobes. As the 

frequency increases, the number of side lobes will also 

increase, but their total energy tends to decrease. The 

slight increase in beam width from SMDAC to,   
     provides a dramatic increase in WNG, from ˗44 dB 

to 18 dB. 

 

Figure 3. Beam shapes at f = 5 kHz,        for the 

SMDAC,        SCOB and SMGAC beam-

formers (left to right). The radial axes in these plots 

represent linear magnitude. 

 

 

Figure 4. Directivity index for different look direc-

tions at f = 1 kHz (top) and f = 5 kHz (bottom).  

       SCOB. 

As one might expect from an array which is not spheri-

cally symmetrical, its directivity pattern is also not sym-

metrical. At low frequencies, the directivity is isotropic 

for all practical purposes. Above about 1 kHz, the di-

rectivity is highest along the z axis, as seen in Figure 4. 



  

 

 

5. EXPERIMENTAL VERIFICATION 

The correctness and practical applicability of the theoreti-

cal results is verified using a physical device consisting of 

84 IM69D130 microphones placed on a 1.6 mm thick 

printed circuit board made from the fiberglass-based lam-

inate FR-4 (Figure 5). The circuit board is further lami-

nated between a 1.0 mm sheet of pressboard, a 0.3 mm 

polystyrene foil and 0.5 mm polyester fabric on either 

side. The total thickness is 5.5 mm, and the outer radius is 

85 mm. The microphones are placed according to the 

model in the previous section. The microphones are con-

nected to a computer via a USB interface. 

 

Figure 5. Experimental measurement device 

 

The device is suspended from the ceiling using a 3 mm 

brass tube with a length of 1.5 m (Figure 6). Power and 

signals are sent through wires inside this tube. One end of 

the tube is connected to the edge of the circuit board and 

the other end is attached to an angle gauge, allowing 

measurements to be taken at a series of rotations about 

the device’s x axis. The tube is stabilized with guy wires 

to prevent lateral movement of the device during rotation. 

A loudspeaker is placed 2 m away from the device. 

The loudspeaker consists of two concentric drivers which 

were driven separately and combined in post-processing 

with a crossover frequency of around 8 kHz. The loud-

speaker enclosure is axisymmetric and airtight. The room 

is not anechoic. Apart from the loudspeaker, the device 

and their supports, there are no objects or structures with-

in a volume with less than 1 m additional path length. 

The impulse response measurements should therefore be 

free from external reflections up to 2.9 ms, and only the 

first 1.5 ms are used in the following. The impulse re-

sponses are measured according to the methods in [8] for 

every 5° of θ from ˗90° to 90°.  

 

Figure 6. Measurement setup (figure not to scale). 

The noise spectrum of the microphones was measured 

by recording the output of one microphone with a 

blocked acoustic port. The absolute level of the spectrum 

was shifted to match the A-weighted noise level of 25 dB 

(A) given in the device’s data sheet [9]. Using this, it was 

possible to calculate the A-weighted equivalent noise lev-

els of the three beamformers shown in Table 2. 

 

Beamformer SMDAC        SMGAC 

Equiv. self noise 113 dB (A) 13 dB (A) 3 dB (A) 

Table 2. Noise level, θ = 0°. 

Since the measurement setup only allows rotation 

about the array’s x axis, we can only directly measure the 

beam patterns in the y-z plane, as in Figure 8. To access 

the beam pattern in the horizontal plane, we measure the 

response of the array in one horizontal direction and cal-

culate the response as the look direction of the beam-

former is rotated around the horizon, resulting in Figure 

7. 

 

 

Figure 7. Modeled (–  –) and measured (—) re-

sponse, SCOB        in the horizontal plane at f 

= 5 kHz. Radius is linear magnitude response. 



  

 

 

Figure 8. Modeled (–  –) and measured (—) re-

sponse in the y-z plane at f = 5 kHz,         and 

      . Radius is linear magnitude response. 

The same analysis that produced Figure 8 is repeated 

across the frequency range to produce an overview of the 

frequency dependency of the polar patterns. The result is 

shown in Figures 9 and 10. In this last figure, the front 

response is normalized. The measured data for the lowest 

frequencies (< 1 kHz) may not be reliable due to the trun-

cated impulse response measurement method. 

 

Figure 9. Modeled (top) and measured (bottom) re-

sponse in a vertical plane at different frequencies,  

       and        . 

 

Figure 10. Modeled (top) and measured (bottom) re-

sponse in the y-z plane,         and      . Ra-

dius is dB magnitude response. 

 

6. CONCLUSION 

Some of the beamforming techniques that were devel-

oped for spherical arrays and line arrays also work well 

with double-sided disc arrays. The array was originally 

developed with 3
rd

 order ambisonics in mind. However, if 

the ultimate goal is to perform beamforming, the direct 

approach studied here gives significantly better results. 

Array-agnostic 3
rd

 order ambisonic beamformers are lim-

ited to 12 dB directivity index and, for arrays of this type, 

about 0 dB white noise gain, while the SCOB beam-

former can provide a WNG of 15-20 dB with the same 

directivity index. It was already known that the SMDAC 

beamformer works best above the array’s aliasing limit. 

Because of the multi-radius nature of the arrays studied 

here, the transition between no aliasing and full aliasing 

takes place over a much wider range than for a spherical 

array. The SMDAC beamformer can only be used in the 

upper part of this range and above. 

Since double-sided disc arrays have a non-isotropic 

scattering function, they work better in some directions 

than in others. The beamformers described here take op-

timal advantage of any scattering that takes place. Partic-

ularly at medium to high frequencies, this effect provides 

a higher directivity and / or white noise gain along the z 

axis than in other directions. This means that for applica-



  

 

tions where the approximate direction of arrival can be 

predicted before setting up the microphone, this may be a 

better option than a spherical array, whereas in applica-

tions where an isotropic response is required, a spherical 

array should be used. 
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